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1 Introduction

Background Interpreting histopathological im-
ages is a critical task for diagnosis and treatment
guidance. Due to shortages of trained pathologists
and expanding applications of histopathology, there
is a need for algorithms to accurately diagnose clin-
ically relevant features to increase the efficiency of
image interpretation. However, annotating images
to train models is expensive and time consuming, so
unsupervised methods are needed to leverage all the
available data [1].

Related Work Previous studies with histopathol-
ogy images have focused primarily on supervised
learning methods including a variety of CNN ar-
chitectures, autoencoders, and SVMs. Current
research has focused on minimizing overfitting
during supervised training with small datasets
through active learning [1], as well as unsupervised
methods including feature extraction via restricted
Boltzmann machines [2] and domain adaptation with
adversarial training [3]. Recent work by Facebook AI
Research demonstrated that unsupervised represen-
tation learning through deep clustering can generate
features for image classification with state-of-the-art
results on the ImageNet dataset [4].

Proposed Approach We apply a similar repre-
sentation learning method to histopathological im-
ages by first finding a representation through unsu-
pervised deep learning and then training a linear clas-
sifier to evaluate the features. For our target task,
we have chosen distinguishing between different cell
types in colorectal cancer H&E images. We then

explore the possibility of applying this representation
to other domains.

2 Methods

Dataset Our data is composed of 5,000, 150 x 150
pixel slices of H&E stained colorectal tissue slides.
These images are labelled with 8 cell types, including
tumor. We split the data into 80% for train, 10% for
validation, and 10% for test, with even class distribu-
tions. During training, we augmented the data using
horizontal and vertical flips.

Deep Clustering Our first method learns an unsu-
pervised representation by alternating between clus-
tering learned features with k-means and predicting
the cluster assignments. Specifically, the features are
created with the AlexNet CNN architecture, and the
clusters are predicted by adding a final classification
layer. The k-means clusters are compared with the
cluster predictions to calculate the cross-entropy loss.
We chose k-means for its simplicity, and AlexNet for a
balance between strong image classification and com-
putational efficiency. A variety of different hyper-
parameters, including batch size, total epochs, and
learning rate, was tested but the most impactful was
the number of clusters used for the deep clustering,
with the optimal amount as 120.

Autoencoder Our second method learns an un-
supervised representation with an autoencoder by
encoding a latent representation of the image in a
lower-dimensional subspace and then reconstructing
the original image. The autoencoder is trained with
a mean-squared error loss between the input image
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and the decoded image. Our architecture uses 4 con-
volutional and 4 convolutional transpose layers.

Evaluation To evaluate our learned representa-
tions, we used them as input features for a logistic re-
gression classifier, similarly to Facebook’s Deep Clus-
tering paper [4]. We trained the classifier to predict
the cell type using labelled images. As a baseline, we
trained a logistic regression classifier using the entire
image as the input. Hyperparameters for the logis-
tic regression classifier were kept constant. The best
model maximizes the test accuracy of this classifier.
To further evaluate the robustness of the features, we
froze the best model trained on the colon images and
used it to generate features on breast H&E histol-
ogy images. We then retrained the logistic classifier
with these features to detect tumors, and retrained
the baseline classifier with the new raw images.

3 Results

Our best deep clustering model obtained 88.26% clas-
sification accuracy on the test set, whereas the base-
line classifier obtained 58.46% (see confusion matri-
ces). The encoder representation achieved an accu-
racy of 35.69%.

Tumor classification is especially important, and the
AUROC for the tumor class with our deep cluster-
ing model is 0.97, whereas the baseline’s is 0.89.

When we attempted do-
main transfer to breast
histology images, our
model obtained 81.25%
classification accuracy,

while the baseline classifier obtained 77.31% and a
lower AUC value (see figure).

4 Discussion

Deep Clustering The high test accuracy in our
results indicates that our unsupervised learning ap-
proach was able to successfully generate an informa-
tive representation of the images in the colorectal
histology dataset. To construct an even more ro-
bust representation, we would integrate a larger set
of unlabelled data to train the model. We would also
like to experiment with the loss function by jointly
optimizing the k-means loss and the cluster predic-
tion loss, which could directly incentivize the model
to produce representations that result in more dis-
criminative clusters. Finally, we would like to vary
the convolutional network structure by experiment-
ing with other architectures such as VGG16 in ad-
dition to AlexNet, since VGG16 typically performs
better on image classification tasks [7].

Autoencoder The loss in the autoencoder is de-
signed to be generative and not discriminative, so
the latent representation was unable to capture fea-
tures relevant to classification tasks as reflected by
the poor test accuracy. In order to introduce an ex-
plicit discriminative component, we would integrate
a deep clustering technique to be used in conjunc-
tion with an autoencoder. By minimizing the com-
bination of the reconstruction loss and the clustering
loss, with a higher bias towards the clustering loss,
this model would be able to simultaneously discrim-
inate and preserve local structure [8].

Domain Transfer Upon applying the representa-
tion learned from the colorectal cancer H&E images
on the new domain of breast H&E histology images,
we were able to see an increase in classification ac-
curacy and AUC compared to the baseline model,
demonstrating our model’s generalizability. To im-
prove further, we would train the model with a wider
variety of histology images [4], and integrate a better
method of stain normalization [2].
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