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Abstract
Purpose Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised 
of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care 
have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric 
acid type A receptor  (GABAAR). We are advancing a therapeutic approach for group 3 based on  GABAAR modulation using 
benzodiazepine-derivatives.
Methods We performed analysis of GABR and MYC expression in MB tumors and used molecular, cell biological, and 
whole-cell electrophysiology approaches to establish presence of a functional ‘druggable’  GABAAR in group 3 cells.
Results Analysis of expression of 763 MB tumors reveals that group 3 tumors share high subgroup-specific and correlative 
expression of GABR genes, which code for  GABAAR subunits α5, β3 and γ2 and 3. There are ~ 1000 functional α5-GABAARs 
per group 3 patient-derived cell that mediate a basal chloride-anion efflux of 2 × 109 ions/s. Benzodiazepines, designed to 
prefer α5-GABAAR, impair group 3 cell viability by enhancing chloride-anion efflux with subtle changes in their struc-
ture having significant impact on potency. A potent, non-toxic benzodiazepine (‘KRM-II-08’) binds to the α5-GABAAR 
(0.8 µM  EC50) enhancing a chloride-anion efflux that induces mitochondrial membrane depolarization and in response, TP53 
upregulation and p53, constitutively phosphorylated at S392, cytoplasmic localization. This correlates with pro-apoptotic 
Bcl-2-associated death promoter protein localization.
Conclusion GABRA5 expression can serve as a diagnostic biomarker for group 3 tumors, while α5-GABAAR is a therapeutic 
target for benzodiazepine binding, enhancing an ion imbalance that induces apoptosis.
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Introduction

Medulloblastoma is a significant cause of cancer-related 
morbidity and mortality in children [1]. Its standard-of-care 
consists of surgical resection, followed by radiotherapy 
and chemotherapy, which cause neurocognitive side effects 
[2–4]. Medulloblastoma molecular profiling delineated four 
subgroups, by consensus termed wingless (WNT), sonic 
hedgehog (SHH), group 3, and group 4 [5–7]. WNT and 
SHH exhibit anomalous expression of genes associated with 
the Wnt and Shh pathways, consistent with genomic altera-
tions [8–10]. Groups 3 and 4, which account for ~ 60% of 
medulloblastomas and include those with poorest prognosis, 
do not have shared subgroup-specific genomic alterations 
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[10]. Group 3 is often referenced as MYC-driven, however 
MYC expression is seen in only a subset of group 3 tumors 
[11]. Group 3 tumors are typically TP53 wild-type and its 
high expression is associated with poor prognosis [12, 13]. 
Group 3 tumors share high expression of GABRA5, which 
codes for the α5-subunit of the ligand-gated ionotropic 
γ-aminobutyric acid type A receptor  (GABAAR) [6].

GABAARs are fundamental in determining an excitation/
inhibition balance in the CNS. As an ionotropic receptor 
mediating chloride-anion flux,  GABAARs predominantly 
function to hyperpolarize neural cells following binding 
of γ-aminobutyric acid (GABA), thereby decreasing the 
likelihood of generating an action potential.  GABAAR usu-
ally consists of two α, two β, and γ subunits arranged as 
α–β–γ–α–β (Fig. 1a). Nineteen genes encode  GABAAR sub-
units, including of six α (GABRA1-6), three β (GABRB1-3), 
and three γ (GABRG1-3) [14]. Benzodiazepines bind at the 
γ-α interface and are positive allosteric modulators, acting to 

increase GABA effectiveness and thus chloride-anion flux. 
Benzodiazepines consist commonly of fusion of diazepine 
and benzene rings (1,4-benzodiazepine) and a phenol ring 
(5-phenyl-1H-benzo[e]) (Fig. 1a). Changes to its chemical 
structure can alter its  GABAAR-subtype preference. For 
example, introducing an ethinyl bond to the diazepine ring 
at  R7 results in a α5-GABAAR preference [15, 16].

Investigating  GABAAR in group 3, we showed that 
Gabra5 (or α5) was present in patient-derived group 3 cells 
and tumor tissue and contributed to assembly of a functional 
 GABAAR [17]. An α5-GABAAR preferring benzodiazepine 
was capable of impairing group 3 cell viability in vitro [17] 
and its potency in a mouse model was greater than stand-
ard-of-care chemotherapeutic [18] and agents proposed as 
potential medulloblastoma therapeutics [19, 20]. The most 
efficacious α5-GABAAR preferring benzodiazepine tested 
(‘QH-II-066’) caused cell cycle arrest and its effective-
ness in inducing apoptosis abrogated by loss in expression 
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Fig. 1  GABAA receptor subunit gene (GABR) and MYC expres-
sion across 763 primary medulloblastoma tumors. a Top,  GABAA 
receptor  (GABAAR), αβαβɣ subunit stoichiometry, consists of five 
subunit transmembrane segments which create the chloride-anion 
conduction pore. Inter-subunit binding sites for GABA and benzodi-
azepine are shown as yellow and red spheres, respectively. Bottom, 
common core structure of a ‘benzodiazepine’. Indicated are sites 
frequently modified  (R1,  R2,  R2′,  R7), which may impart a  GABAAR 
subtype-preference. Introduction of an ethinyl bond at  R7 imparts an 
α5-GABAAR preference. b Supervised heatmap clustering analysis 
across medulloblastoma molecular subgroups using z-score scaling, 
1-Pearson correlation distance, and average clustering. The relation-

ship between genes is indicated by the dendrogram (left). Shown bot-
tom, left is a color palette where color scaling indicates low (green) 
to high (red) expression. Samples were classified into four subgroups 
(ID1) and further into twelve subtypes (ID2). c Supervised heatmap 
clustering analysis of group 3 only using z-score scaling, 1-Pearson 
correlation distance, and complete clustering. Shown bottom, left is 
a color palette where color scaling indicates low (green) to high (red) 
expression. ID1: group 3, yellow; ID2 within group 3: α, yellow; β, 
brown; γ, orange. d Boxplots of GABR and MYC expression across 
subgroups (left) and separately GABRA5 (middle) and MYC (right) 
expression of group 3
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of HOXA5, a homeobox transcription factor that regulates 
p53 expression [17]. Further, QH-II-066 sensitized group 3 
cells to radiation and cisplatin in a p53-dependent manner. 
Thus, p53 appears important in group 3 cells’ response to 
 GABAAR mediated chloride-anion flux.

We report on analysis of  GABAAR and MYC expression 
in 763 primary medulloblastoma patient tumors, characteri-
zation of  GABAAR in a patient-derived cell line, identifica-
tion of chemical features critical to α5-GABAAR preferring 
benzodiazepine potency, and examination of how such ben-
zodiazepines may impair group 3 cell viability.

Materials and methods

Gene expression analysis

Normalized gene expression data for sixteen GABR genes 
and MYC from 763 primary resected medulloblastoma 
specimens was used [11]. Samples were classified into 
four medulloblastoma subgroups and further into twelve 
subtypes: two WNT subgroup [α (n = 49), β (n = 21)], four 
SHH subgroup [α (n = 65), β (n = 35), γ (n = 47), δ (n = 76)], 
three group 3 subgroup [α (n = 67), β (n = 37), γ (n = 40)] 
and three group 4 subgroups [α (n = 98), β (n = 109), γ 
(n = 119)]. Heatmaps for analysis of expression across all 
four subgroups and among group 3 subtypes were generated 
using Morpheus (https ://softw are.broad insti tute.org/morph 
eus). Boxplots for expression analysis were created in R.

Cell lines

Daoy (SHH cell line) and D283 (group 3 cell line) were pur-
chased from ATCC. D425 (group 3 cell line) was obtained 
through a MTA between Emory and Duke.

Cell proliferation

Benzodiazepines were synthesized as described [21, 22], 
kept lyophilized at room temperature, and suspended prior 
to use in dimethyl sulfoxide (DMSO; 0.125%). D283 cell 
viability was assayed using the CellTiter  96® AQueous One 
Solution Assay (Promega) as described [17]. D283 cells 
(7500) added per well of a  Falcon® 96 well flat bottom TC-
treated polystyrene cell culture plate (Corning) in pentapli-
cates and incubated 4–5 h, 37 °C. DMEM (Thermo-Fisher), 
lacking phenol-red, HEPES, and penicillin/streptomycin but 
with 20% FBS and 4 mM L-glutamine, was used for plat-
ing. Benzodiazepines were diluted in DMSO (0.125%) to a 
4 mM working stock for drug dilution in DMEM. After 48 h 
at 37 °C, 20 µL CellTiter  96® AQueous One Solution (Pro-
mega) was added per well, plate incubated 1 h at 37 °C, and 
absorbance (490 nm) measured. To obtain a reading, media 

control (average reading of wells containing only media) 
was subtracted from DMSO control and drug-treated values. 
Drug-treated values were divided by DMSO values to nor-
malize data.  IC50 values were obtained using the ‘[Inhibitor] 
versus normalized response’ nonlinear regression function 
in Prism 7 software (GraphPad).

Electrophysiology

Recordings used methods similar to those described [23]. 
Experiments were performed 24–72 h post-plating at 22 °C 
and across multiple days (controlling for cell health and 
expression efficiency). All reagents were purchased from 
Sigma, unless otherwise noted. Patch pipettes were fabri-
cated from thin-walled borosilicate glass (World Precision 
Instruments) using a horizontal puller (Sutter Instruments) 
to give a resistance of 2–8 MΩ when filled with intracellular 
solution (120 mM KCl/2 mM  MgCl2/10 mM EGTA/10 mM 
HEPES, NaOH adjusted to pH 7.2, 315 mOsm). Extracel-
lular solution contained: 161 mM NaCl/3 mM KCl/1 mM 
 MgCl2/1.5 mM  CaCl2/10 mM HEPES/6 mM d-glucose, 
NaOH adjusted to pH 7.4 (320–330 mOsm). A rapid solu-
tion changer (BioLogic Science Instruments) connected to 
a infusion pump (KD Scientific) delivered GABA and ben-
zodiazepine solutions.

Mitochondria structure–function

Mitochondrial membrane potential was measured using 
the TMRE Mitochondrial Membrane Potential Assay Kit 
(Abcam). D283 cells were treated with drug or control solu-
tions (10 min, 37 °C), 50 nM TMRE added (20 min, 37 °C), 
and TMRE fluorescence visualized (Leica SP8) and quanti-
fied (LAS X platform, Leica).

Quantitative RT‑PCR

Total RNA was extracted from cells (RNeasy Mini Kit, Qia-
gen), converted into cDNA by PCR (Cloned AMV First-
strand Synthesis Kit, Invitrogen; primers shown in Online 
Table 1), analyzed using SYBR dye (SYBR Green PCR 
Master Mix, Applied Biosystems).

Microscopy

Cells plated on poly-d-lysine coated glass coverslips fixed 
1 h in 4% (w/v) paraformaldehyde (Electron Microscopy 
Sciences, EMS), washed in PBS (6×, 5 min/wash), blocked 
1 h (PBS, 0.8% Triton X-100, 10% normal goat serum), 
incubated overnight with antibody. Cells washed in PBS 
(6×, 5 min/wash) and goat anti-rabbit and goat anti-mouse 
secondary [Ig-Alexa-488 (green) or Ig-Alexa-555 (red), 
Invitrogen] added. Cells washed in PBS (6×, 5 min/wash), 

https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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coverslips mounted on slides (Immuno Mount DAPI and 
DABCO Mounting Media, EMS), and fluorescence visual-
ized (Leica SP8) and images prepared (LAS X platform, 
Leica).

Western blots

D283 whole-cell extracts were prepared as described [17]. 
Nuclear and cytoplasmic fractions were prepared using NE-
PER Nuclear Cytoplasmic Extraction Reagent kit (Thermo-
Scientific). Pierce BCA Protein Assay (Thermo-Scientific) 
was used to quantify protein in lysates. Protein (20 µg whole-
cell; 15 µg cytoplasmic/nuclear fractions) were resolved by 
PAGE using 10% pre-cast gels (Bio-Rad), transferred to 
0.45 µM PVDF or 0.45 µM nitrocellulose (for BAD and 
Caspase-9 antibodies) membranes. Membranes blocked in 
PBS containing 0.1% Tween 20 and either 5% non-fat dry 
milk or 5% BSA and probed with primary (anti-p53, anti-
PTEN, anti-Caspase-9, anti-GAPDH, anti-β-actin, Lamin 
B1, PARP, Cell Signaling; anti-MDM2, Abcam). Addition-
ally, Abcam’s p53 Antibody Sampler Panel [S20, S46, S392, 
phospho-p53 (K382), and p53 (DO)] was used. Membranes 
washed 3× (10 min/wash) with 0.1% PBST or 0.1% TBST 
(for phospho-p53 antibodies) and incubated in HRP-conju-
gated secondary anti-rabbit or anti-mouse (GE). Membranes 
washed (3×, 10 min/wash) with 0.1% PBST or 0.1% TBST 
and visualized using ECL Western Blotting Detection Rea-
gent (Amersham) or SuperSignal™ West Pico PLUS Chemi-
luminescent Substrate (Thermo-Scientific) and film.

Results

Medulloblastoma gene expression

We analyzed GABR and MYC expression across all sub-
groups in 763 resected primary medulloblastoma tumors 
[11] (Fig. 1b, c; Online Resource 1, 2; Online Tables 2, 3). 
This analysis reveals that: (1) all subgroups have shared high 
expression of select GABR genes; (2) there is subgroup-
specific high expression of some GABR genes and some 
subgroups have GABR expression that is specific to only a 
subset of patients within the subgroup; (3) there is a positive 
correlation in expression of GABRA5 and MYC in a subset 
of group 3 and more surprisingly WNT tumors.

GABRB3 expression is high across all four subgroups, 
with subtle differences in the degree of expression across 
subgroups (Fig. 1b, c). Expression is also high for GABRG2, 
but there is greater variability in degree of expression 
between subgroups. Groups 3 and 4 have highest expres-
sion of GABRG2.

GABR expression between subgroups and within some 
subgroups is variable: (i) WNT subgroup subtypes (α and 

β) have high expression of GABRG3 and GABRE; (ii) SHHγ 
subtype has high expression of several GABR genes that 
distinguish it from SHHα, SHHβ, SHHδ, while all SHH 
subgroup patients have high expression of GABRA2 and 
GABRG1. Medulloblastoma patients with poorest prognosis 
are group 3. Group 3 patients have high GABRA5 expres-
sion. GABRA5 expression is consistently the highest in the 
group 3γ subtype, which carries the poorest prognosis.

Supervised heatmaps and boxplots show expression dif-
ferences for both GABRA5 and MYC within group 3 and 
WNT subgroups. Correlation between MYC and GABRA5 
is not statistically significant in group 3 (p = 0.202). How-
ever, there is a significant positive correlation in expres-
sion between GABRA5 and MYC in the group 3α subtype 
(p = 0.006), where it was reported that MYC loss is more 
frequent [9], but not in group 3β (p = 0.336). Group 3γ 
has the highest level of MYC expression [11]. We do not 
find a significant correlation (p = 0.634) between MYC and 
GABRA5 expression in the group 3γ subtype. As well as 
group 3γ, WNT subgroup patients have high MYC expres-
sion (Fig. 1b). There is a significant positive correlation 
of MYC and GABRA5 (p < 0.001) in the WNT subgroup 
(Online Resource 1; Online Table 2), but GABRA5 expres-
sion is significantly lower than in group 3 tumors.

GABR expression consistent with assembly 
of α5‑GABRAR 

To identify the probable composition of a  GABAAR in 
medulloblastoma tumors that would be sensitive to benzodi-
azepine modulation, we examined correlation in expression 
of  GABAAR subunits in subgroups using the normalized 
gene expression dataset of 763 medulloblastoma tumors [11] 
(Online Resource 2). Using a Spearman’s correlation test 
(where p < 0.01) we find that: (1) there is a positive cor-
relation in all subgroups in expression of GABR genes that 
may form a functional  GABAAR sensitive to benzodiaze-
pine modulation; and (2) group 3 has a high and correlative 
expression that includes GABRA5. In WNT, SHH, group 3, 
and group 4 there is a shared correlation in expression of 
two groups of genes that suggest assembly of a functional 
 GABAAR and its composition. The GABR gene groups 
in WNT, SHH, group 3, and group 4 are: (1) GABRA1, 
GABRB2, and GABRG2, which code for α1, β2, and γ2 
subunits, respectively; and (2) GABRA2, GABRB1, and 
GABRG1, which code for α2, β1, and γ1 subunits, respec-
tively. In group 3 there is a set of GABR genes that exhibit 
high expression and have a significant correlation in expres-
sion: GABRA5, GABRB3, and GABRG2 or GABRAG3, 
which code for α5, β3, γ2 and γ3 subunits, respectively.

To investigate how benzodiazepines may impair group 
3 cell viability requires use of a cell line(s) that reflects the 
molecular profile of group 3 patient tumors. A significant 
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difference in expression between group 3 subtypes and 
other subgroups is the degree of GABRA5 expression. Fur-
ther, group 3 tumors typically have low N-MYC and high 
MYC expression [11]. We analyzed expression by qRT-
PCR patient-derived lines Daoy, D283 and D425 for N/C-
MYC and GABRA5. Daoy is reported as SHH subgroup 
derived [24], while D283 is a group 3 medulloblastoma 
line, TP53-wildtype [25], and D425 is a group 3 medul-
loblastoma line, TP53-mutated [26]. qRT-PCR reveals that 
Daoy, D283, and D425 have a low and similar degree of 
expression of N-MYC (Fig. 2a). Daoy has no significant 
expression of MYC. In contrast, D283 and D425 have high 

MYC expression, characteristic of some WNT and group 
3 tumors. As noted, group 3 tumors have high correlative 
expression of GABRA5, GABRB3, and GABRG2, which 
cluster on chromosome/locus 15q12. In addition, group 3α 
patient tumors have high GABRA1 expression. D283 has 
very high GABRA5 expression, relative to other GABRA 
genes, and higher GABRB3 and GABRG2 than other 
GABRB and GABRG genes, respectively (Fig. 2b). There 
is a consistency in expression between group 3 tumors and 
D283 cells. Most likely, D283 cell line is representative 
of group 3β or 3γ, given the lower GABRA1 expression 
detected by qRT-PCR, which is more reflective of group 
3α.
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A functional α5‑GABRAR in D283 cells

Immuno-staining for the α5-subunit shows diffuse staining 
that appears localized to the plasma membrane (Fig. 2c). 
To establish that D283 cells express functional  GABAARs, 
we obtained whole-cell patch clamp recordings. If func-
tional  GABAARs were expressed on the cell surface, then 
its agonist GABA should elicit a concentration-dependent 
chloride-anion flux. For D283 cells the average maximal 
current,  EC50, and Hill slope of GABA responses in D283 
cells was − 480 ± 120 pA, 1.26 ± 0.05 µM, and 1.37 ± 0.07 
respectively (where n = 8) (Fig. 2d), demonstrating a concen-
tration-dependent chloride-anion flux commensurate with 
GABA concentration. The electrophysiology recordings also 
provide insight into  GABAAR subtype, chloride-anion flux 
rate, and number of functional receptors per D283 cell. The 
low GABA  EC50 of the native GABA-sensitive receptor in 
D283 cells is consistent with expression of a α5β3γ2 or γ3-
like  GABAAR, supported by qRT-PCR analysis as well as 
GABR expression in group 3 tumors. The basal chloride-
anion efflux rate is ~ 2 × 109 ions/s, consistent with the rate 
of recombinant expressed  GABAAR. We estimate that there 
are ~ 1000 functional α5-GABAARs per D283 cell.

Benzodiazepines are potent α5‑GABAAR modulators

We screened benzodiazepines to identify aspects of the 
chemical structure critical to potency (Fig. 3). All benzodi-
azepines examined were synthesized to be α5-GABAAR pre-
ferring and differed chemically at  R1, endocyclic 2′, or exo-
cyclic  R2′. The most potent benzodiazepines have a hydrogen 
at  R1 and no modification at the endocyclic 2′ or exocyclic 
 R2′ (NOR-QH-II-066) or fluoride at the exocyclic  R2′ (KRM-
II-08 and NOR-KRM-II-08). Benzodiazepines with a larger 
halide (e.g. chloride) at exocyclic  R2′ (KRM-III-77 and 
NOR-KRM-III-77) are poorer ligands for α5-GABAAR. The 
2′-F at the exocyclic  R2′ on KRM-II-08 may form a better 
three-centered hydrogen bond in the α5-GABAAR binding 
site, consistent with in silico modeling [27, 28]. We note an 
apparent increase in cell growth for KRM-III-70, which has 
an exocyclic nitrogen at  R2′. This benzodiazepine may bind 
to an alternative target such as the peripheral benzodiazepine 
channel TSPO (see below), which could enhance mitochon-
drial function and cell proliferation.

Benzodiazepine enhances chloride‑anion efflux

We pursued for greater analysis QH-II-066 and KRM-
II-08, which have  IC50 values of 3.4 ± 0.3 and 0.8 ± 0.1 µM, 

A B

Fig. 3  Cell viability impaired by α5-preferring benzodiazepines. 
Chemical structures of α5-selective benzodiazepines (a) and NOR 
variants (b) tested (top), dose–response curves from MTS cell prolif-

eration assay at 48 h (middle) presented as semi-log plots and derived 
 IC50 values (bottom)
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respectively. Whole-cell recordings were obtained of the 
effect of these benzodiazepines on  GABAAR function 
in D283 cells (Fig. 4a–c; Online Resource 3). QH-II-066 
and KRM-II-08 enhanced  EC10 responses in a concentra-
tion-dependent manner:  PC50: 43 ± 7 versus 61 ± 9, hill 
slope 2.7 ± 5 versus 2.9 ± 5 and  PC50 0.13 ± 0.09 versus 
0.14 ± 0.07 µM, respectively. The high apparent affinity 
for GABA in D283 cells is consistent with the presence of 
functional α5-GABAARs. The  EC50 values for QH-II-066 
and KRM-II-08 are similar in all assays performed, p > 0.05 
Student’s t-test, in contrast to their  IC50 values. In all cases, 
the modulation peaks below 2 µM and has a maximum effect 
of ~ 50%.

Given the lower  IC50 of KRM-II-08 as well as greater 
solubility than QH-II-06 and its potential for future thera-
peutic use, we assessed its hepatocyte toxicity profile.  LD50 
for KRM-II-08 in vitro is > 100 µM, tested in two cell lines 

(HEK293 and HEPG2) (Online Resource 4). KRM-II-08 
is non-toxic until the concentration is less than or equal to 
100 µM, a concentration higher than  IC50 and  EC50 values.

Benzodiazepine induces changes in mitochondria

Since we expected that benzodiazepine binding to  GABAAR 
in group 3 cells might alter ionic flux rapidly assuming exog-
enous GABA is ≥ 0.3 µM, we examined changes to mito-
chondria and its membrane potential. Staining for  GABAAR 
at the plasma membrane remains similar and constant in 
DMSO and KRM-II-08 treated cells as well as untreated 
cells over 48 h (Online Resource 5), suggesting that the 
receptor remains intact and possibly then functional. We 
examined changes in mitochondrial morphology using the 
cationic stain tetramethylrhodamine ethyl ether (TMRE), 
which is taken-up by functioning mitochondria. Ten-minutes 
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Fig. 4  Early chemical and physiological response of group 3 medul-
loblastoma cells treated with α5-selective benzodiazepines. a, b 
D283 cells, clamped at − 60 mV, responses to GABA by α5-selective 
benzodiazepines QH-II-066 (a) and KRM-II-08 (b). Filled boxes 
above current trace denote duration of GABA application. Open 
boxes denote the period of benzodiazepine exposure and are labeled 
with the concentration applied. c Both QH-II-066 and KRM-II-08 
(Bz) show enhanced submaximal  (EC5–EC10) responses in a con-
centration-dependent manner:  PC50: 43 ± 7 versus 61 ± 9, Hill slope 
2.7 ± 5 versus 2.9 ± 5 and  PC50 0.13 ± 0.09 versus 0.14 ± 0.07  µM, 
respectively. The effects of QH-II-066 and KRM-II-08 were not sig-

nificantly different from one another (p > 0.05, Student’s t-test). d 
Fluorescence microscopy imaging of live D283 cells stained with 
tetramethylrhodamine ethyl ester (TMRE) following a 10-min treat-
ment with dimethyl sulfoxide (DMSO; 0.125%), carbonyl cyanide 
4-(trifluoromethoxy) phenylhydrazone (FCCP, 20 µM), or KRM-II-08 
(Bz) (0.7 µM). Media alone had no DMSO. Peak: λex, 549 nm; λem, 
575  nm. e Quantitation of TMRE staining with the Leica Applica-
tion Suite X (LAS X) software platform. Data are presented as stand-
ard error from mean of thirty or more cells (media, n = 30; DMSO, 
n = 43; KRM, n = 39; FCCP, n = 35). Scale bar in panel (d) image for 
FCCP is 10 microns
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following benzodiazepine treatment, mitochondria have 
undergone fission but continue to take-up TMRE (Fig. 4d). 
Fission of mitochondria is not observed in DMSO but is 
when a protonophore, carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone (FCCP) is added.

FCCP disrupts mitochondrial ATP synthesis, depolariz-
ing mitochondria or causing loss of ΔΨm [29]. FCCP is used 
as a positive control for monitoring change in mitochondria 
membrane potential, as it causes reduced TMRE staining. 
We quantified the degree of TMRE staining of thirty or more 
cells in all treatment groups (Fig. 4e). KRM-II-08 causes a 
depolarization of mitochondrial membrane potential within 
10 min, but not DMSO.

There is, as noted above, a chloride-anion efflux in D283 
cells commensurate with benzodiazepine administration 
that mediates membrane depolarization. Present in the 
outer mitochondrial membrane is the peripheral benzodiaz-
epine metabotropic receptor TSPO to which diazepam has 
reported to bind and whose activity can reduce mitochon-
drial membrane potential [30]. We tested if TSPO agonist 
emapunil has an effect on viability of Daoy and D283 cells 
to determine if the observed potency of KRM-II-08 was a 
consequence of its binding to TSPO (Online Resource 6). 
Emapunil does not impair viability of Daoy or D283 cells. 
This observation supports the contention that the primary 
and effective binding site of KRM-II-08 that induces apop-
tosis is not TSPO.

p53 response to benzodiazepine

Previously we demonstrated that benzodiazepines were 
capable of impairing group 3 cell viability, including of 
cell line D425, which has a TP53 exon 4 single-nucleotide 
polymorphism (R72P) that has been reported to impact the 
apoptotic response to some types of stress [31]. Since D425 
response to the benzodiazepines tested was not impacted 
by the TP53 polymorphism, this supports p53 not being 
critical to the cell death response. However, this point muta-
tion may not impair all functions of p53 and the apoptotic 
response of some types of stress are not impacted [32]. We 
also previously observed that benzodiazepines were capable 
of sensitizing group 3 cells to either radiation or a chemo-
therapeutic, abrogated by a p53 knockdown [17], which sup-
ports the role of p53 in the apoptotic response mediated by 
benzodiazepines.

Since p53 appears to play a critical role in the stress-
response to benzodiazepine mediated chloride-anion efflux 
and its DNA-binding domain contributes to this role, we 
examined the impact of the benzodiazepine KRM-II-08 
on expression of genes that participate in the PTEN-TP53-
AKT-MDM2 signaling axis [33]: PI3K molecules (Class I 
regulatory and catalytic subunits, Class II, and Class III); 
serine/threonine kinases AKT1, AKT2, and AKT3; PTEN, 

the phosphatase which negatively regulates the PI3K/Akt 
signaling pathway, stabilizes p53, and whose expression 
is regulated by p53; and MDM2, which codes for the E3 
ubiquitin ligase that functions as a negative regulator of 
p53. We examined changes in expression of these genes as 
well as TP53 in D283 cells at 6 and 24 h post-incubation 
with KRM-II-08. MDM2, PTEN, AKT1-3 as well as TP53 
are upregulated in KRM-II-08 treated cells, which is ben-
zodiazepine-specific, as DMSO causes no change in TP53 
and PTEN levels while MDM2 and AKT1-3 expression 
are down-regulated (Online Resource 7). Of PI3K genes, 
only Class I catalytic and regulatory subunits PI3CA and 
PIK3R1, respectively, are significantly upregulated. MDM2 
protein levels also appear to increase moderately between 
6 and 24 h post-KRM-II-08 treatment, while p53 levels 
increase significantly at 24 h and in both nuclear and cyto-
plasmic fractions (Fig. 5a). As well as an increase in p53 by 
Western blot, we observe an increase in p53 by immuno-
fluorescence with the most intense staining in the nucleus 
(Fig. 5b).

Previously we observed that a less potent benzodiaz-
epine studied here (see QH-II-066,  IC50 3.4 µM), caused 
cell cycle arrest [17]. We therefore repeated an analysis on 
the cell cycle of D283 cells of the more potent benzodiaz-
epine KRM-II-8  (IC50 0.8 µM). KRM-II-08 does not arrest 
the cell cycle of D283 cells at 24 or 48 h (Online Resource 
8). This suggests that the less potent benzodiazepine tested 
earlier may have a secondary or ‘off-target’ effect in group 
3 cells. However, arresting the cell cycle is not critical to 
benzodiazepine-mediated apoptosis.

Activation of cell death

There are early changes in mitochondrial structure–func-
tion, which may precipitate events that result in D283 
cell death. However, cell death is not immediate and may 
require p53 transcriptional activity as well as its migration 
to the cytoplasm. We initially examined whether D283 cells 
underwent senescence. Analysis of senescence-associated 
β-galactosidase of DMSO and KRM-II-08 treated cells 
reveals that in 48 h at most ~ 12% of cells may be undergo-
ing senescence (Online Resource 9), which does not account 
for loss in cell viability observed using KRM-II-08. We sub-
sequently utilized an immune-blotting approach to identify 
change in levels and/or post-translational modification of 
proteins that have a role in apoptosis in D283 cells incubated 
with DMSO or KRM-II-08. There is a modest change in the 
degree of p53 post-translational modification, specifically 
phosphorylation of Serine392 (pS392) (Online Resource 
10). We confirmed by Western that p53 is phosphorylated 
at S392 (Fig. 5a). While S392 exhibits increased phospho-
rylation in KRM-II-08 treated cells, it’s also modified in 
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control cells (DMSO and media). Thus, pS392 appears to 
be a constitutive modification in D283 cells.

Since senescence did not account for the death of most 
benzodiazepine treated cells, we examined by immuno-
fluorescence KRM-II-08 treated D283 cells for change in 
amount and/or localization of pro-apoptotic Bcl-2 family 
members Bax, Puma, Bcl-2, Bcl-xL, and BAD [34]. Only 
BAD protein exhibits a change in intensity detected by 
immunofluorescence in KRM-II-08 treated D283 cells and 
there is a slight increase in BAD protein levels between 6 
and 24 h (Online Resource 11). It’s been reported that BAD 
and p53 do complex at mitochondria to induce apoptosis 
[35].

Discussion

In medulloblastomas we find that GABR genes are expressed 
in all subgroups. Interestingly, we find that WNT subgroup 
patients appear to have a unique shared GABR expression 
signature. In contrast, not all SHH subgroup patients have a 
shared GABR expression signature, however, there is a spe-
cific subset of SHH subgroup patients (the SHHγ subtype) 
that do. These observations may be connected to activation 
of distinct signaling pathways in these subgroups and war-
rant further analysis. In this study, we have also explored 
in detail the GABR signature in group 3 patients and the 
functional and therapeutic implications of the signature. We 
report that the group 3 cell line D283 has a functional α5β3γ2 

or γ3-like  GABAAR and have shown the physical, chemical, 
and molecular changes to group 3 cells that precede their 
death, as a consequence of α5-GABAAR preferring benzo-
diazepine enhancing the activity of GABA.

In a non-neural cell,  GABAAR may polarize a cell by 
creating a chloride-anion flux, which may drive cell prolif-
eration [36]. Alternatively, a chloride-anion flux may elicit a 
stress-response, if it significantly perturbs ionic homeostasis 
[37]. We have shown that the α5β3γ2 or γ3-like  GABAAR in 
group 3 cells mediates a significant chloride-anion efflux to 
depolarize mitochondria, when an α5-GABAAR preferring 
benzodiazepine binds in the presence of GABA, such that 
the cell activates a stress-response involving p53 and that 
this sustained effect induces apoptosis.

In our analysis of p53 response to benzodiazepine, we 
find that p53 is constitutively phosphorylated at S392. S392 
phosphorylation stabilize p53’s tetrameric state, which 
decreases its turnover and increases its DNA-binding affinity 
[38]. We have not examined the oligomeric state of cytoplas-
mic p53, but it may serve a role in determining its cytoplas-
mic function that includes an increased affinity for the pro/
anti-apoptotic protein BAD. In addition, S392 hyperphos-
phorylation is correlated with poor prognosis in several can-
cers [39–41], and this may be the case in medulloblastoma.

Conclusion

Altered GABA levels or high expression of  GABAAR subu-
nits has been observed in pediatric as well as adult cancers 
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[42–46]. Ion channels have potential to be promising anti-
cancer therapeutic targets [47] and a significant number of 
FDA approved drugs target  GABAARs. α5-GABAAR pre-
ferring benzodiazepine KRM-II-08 is like other benzodi-
azepines predicted to be non-toxic and capable of crossing 
the blood–brain barrier. While we have shown in cell cul-
ture that KRM-II-08 is non-toxic, further testing in vivo is 
warranted. KRM-II-08 may be an effective therapeutic to 
be included in treating medulloblastoma and other cancers. 
Moving in this direction will require more extensive studies 
in an appropriate animal model, possibly exploring impact 
of administration of benzodiazepine in combination with 
radiation and/or other therapeutics.
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